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Abstract

We give an algorithm for triangulating n-vertex polygonal regions (with holes) so
that no angle in the final triangulation measures more than _r/2. The number of triangles
in the triangulation is only O(n), improving a previous bound of O(n2), and the worst-
case running time is O(n log 2 n). The basic technique used in the algorithm, recursive
subdivision by disks, is new and may have wider application in mesh generation. We
also report on an implementation of our algorithm.

1. Introduction

The triangulation of a two-dimensional polygonal region is a fundamental problem arising

in computer graphics, physical simulation, and geographical information systems. Most

applications demand not just any triangulation, but rather one with triangles satisfying

certain shape and size criteria [9]. In order to satisfy these criteria, one typically allows

triangles to use new vertices, called Steiner points, that are not vertices of the input polygon.

The number of Steiner points should not be excessive, however, as this would increase the

running time of computations.

Throughout the application areas named above, it is generally true that large angles

(that is, angles close to r) are undesirable. Babu_ka and Aziz [2] justified this aversion for
one important application area by proving convergence of the finite element method [25]

as triangle sizes diminish, so long as the maximum angle is bounded away from 7r. They

also gave an example in which convergence falls when angles grow arbitrarily flat. (An

elementary example in which large angles spoil convergence is Schwarz's paradox [22].)

Any bound smaller than 7r implies convergence in Babu_ka and Aziz's model, but a

bound of _r/2 on the largest angle has special importance. First of all, any stricter non-

varying requirement would also bound the smallest angle away from zero; for some inputs

(such as a long, skinny rectangle) this forces the triangulation to contain a number of trian-

gles dependent on the geometry--not just on the combinatorial complexity--of the input.

Second, a nonobtuse triangulation is necessarily a (constrained) Delaunay triangulation [8].
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Third, a nonobtusetriangulationadmitsa perpendicular planar dual, that is, an embed-

cling in which dual edges cross at right angles. Such an embedding is convenient for the

"finite volume" method [25]. Finally, a nonobtuse triangulation has better numerical prop-

erties [3, 27]. In particular, Vavasis [27] recently proved that for finite element problems with

physical characteristics that vary enormously over the domain, a nonobtuse mesh implies

faster convergence of a certain numerical method.

These properties have established nonobtuse triangulation as a desirable goal in finite

element mesh generation. Several heuristic methods have been developed to compute nonob-

tuse triangulations [4, 20]. Baker, Grosse, and Rafferty [3] gave the first provably-correct

algorithm. Their algorithm also bounds the smallest angle away from zero, and hence nec-

essarily uses a number of triangles dependent upon input geometry. See [16] for a more

recent algorithm of this type.

/,Prom the point of view of theoretical computer science, however, it is important to

determine the inherent complexity of nonobtlise triangulation, apart from no-small-angle

triangulation. Bern and Eppstein [8] devised a nonobtuse triangulation algorithm using

O(n 2) triangles, where n is the number of vertices of the input domain. This result demon-
strates a fundamental complexity separation between bounding large angles and bounding

small angles. Bern, Dobkin, and Eppstein [7] later improved this bound to O(n 1"s5) for

convex polygons.

In this paper, we improve these bounds to linear, using an entirely different--and more

widely applicable---technique. Aside from sharpening the theory, our new algorithm boasts

other advantages: it parallelizes, thereby placing nonobtuse triangulation in the class A/C;

and it does not use axis-parallel grids, so the output has no preferred directions. Our

algorithm also improves results of Bern et al. [7] on no-large-angle triangulation. The

superseded results include an algorithm guaranteeing a maximum angle of at most 51r/6

that uses O(nlog n) triangles for simple polygons and O(n 3/2) triangles for polygons with

holes.

2. Overview of the Algorithm

Our algorithm consists of two stages. The first stage (Section 3) packs the domain with

non-overlapping disks, tangent to each other and to sides of the domain. The disk packing

is such that each region not covered has at most four sides (either straight sides or arcs), as

shown in Figure l(a). The algorithm then adds edges (radii) between centers of disks and

points of tangency on their boundaries, thereby dividing the domain into small polygons as

shown in Figure l(b).

The second stage (Section 4) triangulates the small polygons using Steiner points located

only interior to the polygons or on the domain boundary. Restricting the location of Steiner

points ensures that triangulated small polygons fit together so that neighboring triangles

share entire sides. Figure l(c) shows the resulting all-right-triangle triangulation.

This algorithm is circle-based, rather than grid-based like the previous polynomial-

size nonobtuse triangulation algorithm [8]. Analogously, the problem of no-small-angle

triangulation has grid-based [10] and circle-based [23] solutions. In retrospect, circle-based

algorithms offer a more natural way to bound angles, as well as meshes more intrinsic to the

i.p,'_ ,]orn,,_. This conclusion is supported by two _;sc,re examp]_.q. In the second stage of
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Figure 1. (a) Disk packing. (b) Induced small polygons. (c) Final triangulation.

this paper's algorithm, certain misshapen small polygons cause technical difficulties; these

are neatly solved by packing in more disks. (One of these additional disks is the second

from the left along the bottom side of Figure l(b).) In other recent work, Mitchell uses the

"angle buffering" property of circles to give a triangulation, restricted to use only interior

Steiner points, with linear size and largest angle nearly as small as possible [18].

3. Disk Packing

In this section, we describe the first stage of the algorithm. Let P denote the input: a

region of the plane bounded by a set of disjoint simple polygons with a total of n vertices.

An arc-gon is a simple polygon with sides that are arcs of circles. The circles may have

various radii, including infinity (which implies a straight side).

Throughout the disk-packing stage, we make use of the generalized Voronoi diagram

(GVD), which is defined by proximity to both edges and vertices. The interior points of

polygonal region P are divided into cells according to the nearest vertex of P, or the nearest

edge (viewing each edge as an open segment). The resulting partition consists of a set of

bisectors, either line segments or parabolic arcs; it is essentially the same as the medial

azis [21]. The GVD can be similarly defined for arc-gons, or more generally for arbitrary

collections of points, segments, and circular arcs. The GVD of a collection of n points,

segments, and arcs can be computed in time O(nlog n) [13].

The disk-packing stage consists of three smaller steps. First, one or two disks are placed

at each vertex of the polygon. Second, holes in the polygon are connected to the boundary

by adding disks tangent to two holes, or to a hole and the outer boundary. Third, disks

are added to the as-yet-uncovered regions (called remainder regions), recursively reducing

their complexity until all have at most four sides.

Disks at Corners. The first step preprocesses P so that we need only consider arc-gons

with angle 0 at pn, ;: _el cex. At every convex vertex of P, we add ,_ _mall disk tangent to



Figure 2. Adding disks at (a) convex and (b) concave corners of polygonal region P.

both edges, as shown in Figure 2(a). At every concave vertex of P, we add two disks of equal

radii, tangent to the edges, and tangent to the angle bisector at the corner, as shown in

Figure 2(b). We choose radii small enough that disks lie within P, and none overlap (that

is, intersect at interior points). This step isolates a small 3- or 4-sided sided remainder

region at each corner of P. The large remainder region is an arc-gon of 2n + r = O(n) sides,
where n is the number of vertices of P and r is the number of concave corners.

The first step can be implemented in time O(n log n) using the GVD of P. By checking

the adjacencies of GVD cells, we can determine the nearest non-incident edge for each

vertex v of P; one-eighth this distance gives a safe radius for the disks next to v. (Our

implementation actually uses some other choices of radii.)

Connecting Holes. The second step connects polygonal holes to the outer boundary by

repeatedly adding a disk tangent to two or more connected components of the boundary.

(At this point, a step-one disk touching a hole boundary is considered to be part of the

hole.) At the end, the large remainder region is bounded by a simply-connected arc-gon

with O(n) sides. Every corner of this arc-gon has angle 0, since each results from a tangency.
The second step can be implemented in time O(nlog 2 n). We use a data structure that

answers queries of the following form: given a query point p, which data object (vertex,

edge, or disk) will be hit first by an expanding circle tangent to a vertical line through p

(tangent at p and to the left of the line)? Such a query can be answered using Fortune's

,-map [13], a sort of warped Voronoi diagram.
The initial set of data objects includes the edges, vertices, and disks attached to the

outer boundary of the input polygon. The first query point is the leftmost point on a hole.

The answer determines a disk D entirely contained within the polygon, touching both the

hole and the outer boundary. Disk D is inserted into the query data structure, along with

the vertices, edges and disks of the hole. Each subsequent query is performed using the

leftmost point of all remaining holes. Altogether, the queries yield a set of disks connecting

all holes and the exterior of the polygon.

For a static set of data objects, the .-map can be built in time O(nlogn) [13], and

standard planar subdivision search techniques [21] yield an O(logn) query time. In our

case, the set of data objects is not fixed, since edges and a disk are added following each

query. A trick due to Bentley and Saxe [5] allows dynamic insertions to the query structure,

with query time O(log 2 n) and amortized insert time O(log 2 n). The trick is to divide the n

data objects among O(log n) data structures, one for each bit in the binary representation

of n. A query searches all data structures in O(log 2 n) time. An insertion rebuilds all the

data structures corresponding to bits that change. The total time required for n insertions

is O(n log 2 n).
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Figure3. A disktangentto threeedgesof anarc-goniscenteredat a vertex of the GVD.

Reducing to 3- and 4-Sided Remainder Regions. As shown in Figure 3, a disk tangent

to three sides of an arc-gon must be centered at a vertex of the GVD. Such a disk divides

the region enclosed by the arc-gon into four pieces: the disk itself and three smaller regions

bounded by arc-gons. The final step of the disk-packing stage adds a linear number of disks

and reduces all remainder regions to ones bounded by 3- and 4-sided arc-gons. After the

first two steps, the only remainder region with more than four sides is simply connected;

hence the edges of its GVD form a tree.

Let A be a simply connected n-vertex arc-gon. To subdivide A, we add a disk tangent to

three sides, not all of which are consecutive. If three consecutive sides were used, no progress

would be made: the three resulting arc-gons would have 3, 3, and n sides. Non-consecutive

sides guarantee that each resulting arc-gon will have at most n - 1 sides.

Lemma 1. It is possible to reduce all remainder regions to at most 4 sides, by packing

O(n) non-overlapping disks into arc-gon A.

Proof: Each vertex of the GVD corresponds to a disk tangent to three sides of A. If A

has at least five sides, then there is a vertex v of the GVD that is adjacent to two non-leaf

vertices of the GVD; a disk centered at v is tangent to three sides of A that are not all

consecutive.

Now let d(n) be the maximum number of disks need to reduce an n-sided arc-gon to 3-

and 4-sided remainder regions. We prove d(n) _< n - 4 by induction on n. The base cases

are d(3) = 0 and d(4) = 0.
For the inductive step, notice that adding one disk produces three new arc-gons. (We can

simply ignore extra tangencies in the degenerate case of four or more tangencies.) Suppose

the new arc-gons have k, l, m sides, respectively, with 3 _< k < l < m. Since we are choosing

non-consecutive sides, as guaranteed by Lemma 1, m < n. Counting 1 for the added disk,

we have that d(n) < 1 + d(k) + d(1) + d(m). Since the disk divides three sides, and is itself

divided in three places, we have k + l + m = n + 6.

First suppose k = 3. Since we are choosing non-consecutive sides, I > 4, so

d(n) _< l+d(3)+d(l)+d(m)

_< 1+0+ (l-4)+(m-4)

= 7= 3)- 7= n- 4.

When k >__4, we have d(n) <_ 1 + d(k) + d(1) 4 rl(ro_. By induction, d(n) .<_1 + (k - 4) +

(l - 4) + (m - 4), which is equal to (k-l- t + m) - ll = (n'_- 6) - ll = n - 5. •



Figure 4. Triangulating regions with vertices of the polygonal region P.

Finally we comment on running time. Any tree contains a vertex, called a centroid,

whose removal leaves subtrees of size at most two-thirds the original size. By choosing a

disk centered at a centroid of the GVD of A, we split A into arc-gons A1, A2, and A3.

We imagine splitting A1, A2, and A3 in parallel, so that altogether there will be O(logn)

splitting stages, each involving a set of arc-gons of total complexity O(n). If we recompute

GVD's from scratch after each splitting stage, we obtain total time O(n log 2 n). This can

be improved to O(n log n) by rebuilding GVD's in linear time, using an adaptation of [1].

4. Triangulating the Pieces

We now describe the second stage of our algorithm. At this point, polygonal region P has

been partitioned into disks and remainder regions with three or four sides, either straight

or circular arcs. Each circular arc of a remainder region R is naturally associated with a

pie-shaped sector, namely the convex hull of the arc and the center of the circle containing

the arc. We denote the union of R and its associated sectors by R +. These augmented

remainder regions define a decomposition of P into simple polygons with disjoint interiors.

In this section, we show how to triangulate each R + region. All Steiner points will lie

either on straight sides of R (that is, along P's boundary) or interior to R +. Thus we

never place Steiner points on the radii bounding sectors, and triangulated R + regions will

fit together at the end. Our triangulation method is given in three cases: remainder regions

with vertices of P, three-sided remainder regions, and four-sided remainder regions. The

first two cases are easy, but the last is quite intricate. In all cases, triangulating a single

R + region takes O(1) time, so altogether the running time of the second stage is O(n).

Remainder Regions with Vertices of P. Every vertex of P was isolated by one or two

disks in the first step of the algorithm. The resulting regions R + can be triangulated with

at most four right triangles, as shown in Figure 4, by adding edges from the disk centers to

the points of tangency and the vertex of P.

Three-Sided Remainder Regions. A three-sided remainder region R without a vertex

of P is bounded by three circular arcs, so that arcs meet tangent at the vertices of R. Here

we are considering a straight side to be an arc of an infinitely large circle. We call a Steiner

point in an augmented remainder region R + safe if it lies either interior to R + or on the

boundary of P.

Lemma 2. If R is a three-sided remainder region, then R + can be triangulated with at

most six right triangles, adding only safe Steiner points



Figure 5. Three-sided remainder regions: (a) with a straight side, (b) with only finite-radius arcs.

Proof: First assume that R has a straight side (necessarily at most one), and view R so

that this straight.side forms a horizontal base. The augmented region R + is a trapezoid

with two vertical sides, and a subdivision point p along its slanted top side. We cut per-

pendicularly from p (that is, tangent to both arcs) across R until we hit the base, and there

add a safe Steiner point s. We add edges from s to the centers of the arcs' circles to divide

R + into four right triangles, as shown in Figure 5(a).

Now assume all the sides of R are arcs of finite radius. Notice that R + is a triangle with

subdivided sides. Moreover, the subdivision points along the sides of R + are exactly the

tangency points of the inscribed circle of R +. (This follows from the fact that the inscribed

circle makes each corner of R + incident to two edges of equal length.) So we add the circle's

center c and edges from c to all the vertices around R +, dividing R + into six right triangles,

as shown in Figure 5(b). •

Four-Sided Remainder Regions. A four-sided remainder region R is bounded by four

circular arcs (possibly of infinite radius) that meet tangent at the vertices of R. Lemma 3

states two interesting properties of these regions.

Lemma 3. The arcs of R have total measure 2_r. The vertices of R are cocircular.

Proof: If all arcs have finite radius, then the sum of the measures of the arcs of R is

identical to the sum of the measures of the angles at the corners of R +. For straight sides,

we imagine further augmenting R with "infinite sectors" of angle 0.

Next we show that the vertices are cocircular. Let C1 and C3 be finite-radius circles

containing opposite arcs of R. (Here notice that if R has two straight sides, they must

be opposite.) Assume the two lines that are externally tangent to both C1 and C3 meet

at a point x. There exists an inversive transformation ([11], pp. 77-95) of the projective

plane that maps x to infinity and hence the two external tangent lines to parallel lines.

The transformed circles C_ and C_, corresponding to C1 and Ca, have equal size, so the

vertices of the transformed remainder region R r form an isosceles trapezoid. It is easy to

see that any isosceles trapezoid has cocircular vertices. The inverse of the original inversive

transformation maps the circle containing the vertices of R' to a circle containing the vertices

of R.•

Now if we are lucky, the region R + can be triangulated with 16 right triangles, as

shown in Figure 6 HeL'e we have added the center c c,f ;i,c circle through R's vertices in



Figure 6. The good case for four-sided remainder regions.

order to form four kites (quadrilaterals with two adjacent pairs of equal-length sides). This

triangulation, however, can fail in two different ways: (1) if one of the arcs of R measures

more than 7r (a reflex arc), then the angles at the corresponding vertex of R + will measure

more than 7r/2; and (2) if center e lies outside the convex hull of R, then it lies on the

wrong side of one of the chords and will introduce unwanted intersections. Each of these

difficulties will be handled by adding yet another disk.

First assume R has a reflex arc on circle C3. Add another disk C', tangent to C3 and

C1 (the circle containing the arc opposite C3), such that the center of C* lies on the line

joining the centers of C1 and C3. The new disk C*--unlike any of the disks used up until this

point--may overlap an old disk and produce a self-intersecting remainder region, as shown

in Figure 7. Lemma 3 still holds for self-intersecting remainder regions. Region R +, formed

as before by adding the associated sectors to R, remains a simple polygon with subdivision

points on its sides, specifically a triangle with three subdivisions on one side and one on

each of the others. The next lemma shows how to triangulate R + with a generalization of

the method of Lemma 2.

Lemma 4. Let R be a self-intersecting four-sided remainder region resulting from breaking

up a reflex four-sided remainder region by the addition of C*. Then R + can be triangulated

with at most 12 right triangles, adding only safe Steiner points.

Proofi We may assume that all arcs of R have finite radius. If R has a straight edge, we

can apply the triangulation to a region with an infinite sector attached to the straight edge

and then simply remove the resulting infinite strips.

C 2

1

Figure 7. Adding a new circle C* to break up a reflex remainder region.
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Figure 8. (a) Mutual tangents and mutual chord meet at a point. (b) Triangulation.

Consider one of the arcs S next to C*. We claim that the lines tangent to S at its

endpoints and the mutual chord of C* and its opposite arc all meet at a single point

p interior to R, as shown in Figure 8(a). This claim allows the triangulation shown in

Figure 8(b).

Why is the claim true? For each of the three disks--C*, the opposite disk, and the one

with arc S--we define a power function. The power function of a circle with center (xc, yc)

and radius r is P(x, y) = (x - Xc) _ ÷ (y - yc) 2 - r 2. The power functions of two tangent

circles are equal along their mutual tangent line; the power functions of two overlapping

circles are equal along a line containing their mutual chord. The point p of the claim is the

point at which all three power functions are equal. •

We now consider the second difficulty. Call a four-sided remainder region R centered if

the convex hull of//contains the center c of the circle through R's vertices, and uncentered

otherwise. Let the arc of R with the longest chord lie along circle C1, and denote the other

circles by C2, C3, and C4, clockwise around R. (Circles through infinity handle the case

of straight sides.) Assume that the line through the centers of C1 and C3 is vertical as in

Figure 9. If R is uncentered, then c must lie below the chord on C1.

Let t12 he the vertex of R at which C1 and C2 meet, and similarly define t23, t34, and

t41. For a disk C* tangent to both C1 and C3, let SL (= SL(C*)) be the circular arc

with endpoints t12 and t23 that passes through the points at which C* meets C1 and C3.

Lemma 3 guarantees that such an arc exists. Similarly define St. Let eL and cr be the

centers of the circles containing SL and er, respectively.

Lemma 5. There exists a disk C c tangent to C1 and C3, such that cL lies in the convex

hull of the four points of tangency around SL and cr lies in the convex hull of the four points

of tangency around St.

Proof: First let C* be the disk that is tangent to C1 and C3 such that the center of C*

lies on the line through the centers of C1 and (?3.

Centers CL and c_ lie on a horizontal line through the center of C*, hence outside C1

and C3. But the requirements of the lemma may be violated, because c_ may lie outside the

chord t34t41 of Sr (if Sr has measure less than r) or CL may lie outside the chord t12t23 of $5

(if ,qr. has measure less than r). We assert _.h_,t both of _hese bad conditions ca_mut occur
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Figure 9. The trajectories of centers CL and c_ as C* sweeps.

at the same time. Why? It suffices to show that the sum of the measures of SL and Sr is

at least 2a. Angle [-t23t.3t34, where t.3 is the point of tangency of C* and C3, measures at

least 7r/2, because the arc of R on C3 measures at most _r. And /tl_t.3t41 measures more

than re�2, because the center of the circle through the vertices of R lies below tl_t41. Hence

the remaining angles at t.3 (those subtended by points on SL and St) sum to less than _r.

If neither bad condition occurs, then C* satisfies the conditions of the lemma, and we

are done. But if one of the bad conditions does occur, then we sweep C* in the direction

that could cure the condition, while keeping C* tangent to both C1 and C3. If cr lies outside

t34t41, then we sweep C* to the left in Figure 9; the other case is symmetrical.

During the leftward sweep, c_ moves towards C1 along the perpendicular bisector of

t34t41 and CL moves towards C_ along the perpendicular bisector of t12t23 , as shown in
Figure 9. These bisectors never intersect C3, so CL and c_ can never lie outside their chords

on C3. The chords of SL and S_ between tangency points on C* are never the longest chords

on these arcs, so CL and c_ also lie safely inside these chords throughout the sweep.

As c_ moves, it must pass pass through t34t41 and become good, before it reaches C1

and becomes bad. By the arc-measure argument above, c_ must cross inside t34t41 before

CL crosses outside t12t23. Hence at some point in the sweep, both cr and CL satisfy the

conditions of the lemma, and the C* at this point is C_*. |

Lemma 5 breaks up uncentered, non-reflex remainder regions, but unless Cc coincides

with the initial C* in the sweep, adding C* creates a new reflex remainder region. The

following lemma finesses this final difficulty (shall we say circularity?) by triangulating
both new augmented regions at once.

Lemma 6. Let R be a non-reflex, uncentered, four-sided remainder region. Then R + can

be triangulated into at most 28 right triangles, adding only safe Steiner points.

Proof." Again we may assume that all arcs of R have finite radius, as a solution to this

case implies a triangulation for the case of straight sides.

We start by adding the "centering" disk C_, guaranteed by Lemma 5. As above, we

denote the tangent point of C* and C1 by t.1 and the tangent point of C_ and C3 by t.3. In
addition to t.1 and t.3, we add the following Steiner points: the centers ct and c, associated

with arcs St and S,, and the midpoint m of segm,_"* _-,it.3. See Figure 10.
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Figure 10. Triangulating R + when R is uneentered.

We triangulate by adding: all chords around St and Sr; lines from c/to point m and to

the centers of C1, C2, and C3; and lines from cr to point m and to the centers of C3, C4,
and C1. Finally we add an edge between the center of C1 and t.1 and between the center

of C3 and t. 3.

Resulting triangles come in sets of four, each set triangulating a kite by adding its

diagonals. Hence all triangles are right. (Notice that C_' is treated somewhat differently

than the other circles: we do not use its center. Nevertheless the four triangles around m

form a kite, because t.lt.3 is the mutual chord of C*, 5:2, and $4.) •

We have now completed the proof of our main theorem.

Theorem 1. An n-vertex polygonal region can be triangulated with O(n) right triangles,

in time O(nlogn) for simple polygons and O(nlog 2 n) for polygons with holes. •

5. Implementation

We implemented our algorithm within the Matlab environment [15]. The implementation
differs somewhat from the algorithm described in the text. We use several heuristics for

disk placement so as to reduce the number of triangles. Also we do not bother to compute

generalized Voronoi diagrams. Rather we use a simple O(hn) method to connect h holes to

the boundary, and we choose arbitrary disks touching three non-consecutive sides, rather

than disks centered at GVD centroids. To keep the user entertained during the worst-case
O(n 2) running time, we display color-coded disks and triangles as they are added.

Experiments with a variety of polygonal regions show that an n-vertex input typically

produces about 20n triangles. (The maximum observed was about 25n for an input with

n- 3 reflex corners.) Since a floating point representation entails roundoff, some of the right
angles present in the nonobtuse triangulation become slightly obtuse. The worst test case

had an angle of about _ + 10 -11 radians (Matlab retains 16 digits), so the implementation

is fairly robust, which is somewhat surprising given that our implementation often places
very small disks next to very large ones.
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•6. Parallelizing the Algorithm

We now sketch the first A/'C algorithm for nonobtuse triangulation. We give a straightfor-

ward though rather inefficient algorithm, with parallel time O(log 3 n) and processor require-

ment O(n2). Both time and processors should be improvable. One bottleneck subprob!em

is the computation of the GVD of circular arcs; see [14] for the GVD of line segments.

Theorem 2. An n-vertex polygonal region P (with holes) can be triangulated with O(n)
right triangles in O(log 3 n) time on O(n 2) EREW PRAM processors.

Proofi Using O(n 2) processors--one for each vertex-edge pair--and time O(log n), we can

compute the nearest non-incident edge for each vertex and hence choose appropriate radii for

disks to pack into corners. The second step, connecting holes, is trickier. We first compute a

minimum spanning tree (MST) of P's holes; by this we mean the shortest set of line segments

S, each segment with both endpoints on the boundary of P, such that the union of S and the

exterior of P is a connected subset of the plane. Using O(n 2) processors and time O(logn),

we compute for each vertex the nearest edge lying on a different connected component of P's

boundary. We use this information to compute distances between connected components,

and add to S the shortest component-joining line segment incident to each component. This

reduces the number of components by at least a factor of two, so O(log n) such merging
steps suffices to complete the computation of S.

Now it is not hard to show that no point of the plane is covered by more than 0(1)
diameter disks of segments in S. Hence there is a pairwise-disjoint set of diameter disks

of cardinality a constant fraction of IS[ [26]. It is not hard to find these disks in parallel

time O(log n) using separators. We repeat the process of computing the MST (of the new

connected components, holes plus disks) and finding a large independent set of diameter

disks. After O(logn) cycles--for total time of O(log 3 n)--we have reduced to a simply-
connected arc-gon.

The third step of the disk-packing stage uses the generalized Voronoi diagram in order

to find centroid disks. Using O(n 2) processors and time O(log 2 n), we can compute the

GVD of a set of n circular arcs as follows. We compute the equal-distance curve (bisector)

for each pair of arcs. Then for each arc a, we compute the piecewise-polynomial boundary

of a's cell recursively by dividing the set of bisectors into two equal halves and then merging

the boundaries for each half. Two piecewise-polynomial boundaries of O(n) pieces can be

merged in time O(log n) on n processors. Once, the GVD has been computed, a centroid

can be found in time O(log n) by alternately removing leaves and merging degree-2 paths.

Recall that the algorithm requires a "decomposition tree" of centroid disks of height

O(log n), so by simply recomputing the GVD after each centroid, we obtain an overall time

for the third disk-packing step of O(log 3 n). Finally, the triangulation stage consists entirely
of local operations, so it is trivially parallelized. •

7. Conclusion

We have presented a new algorithm for nonobtuse triangulation of polygonal regions with

holes. The number cf triangles produced is linear in the number of verficcs of the input,
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a significant improvement over previous methods. This is of course worst-case optimal,

resolving the question of the theoretical complexity of nonobtuse triangulation of polygons.

One direction for further work is extending the algorithm to inputs more general than

polygons with holes; these inputs occur in modeling domains made of more than one ma-

terial. Currently, there is an algorithm for refining a triangulated simple polygon into a

nonobtuse triangulation with O(n 4) triangles, and also an _2(n 2) lower bound [8]. There is

still no algorithm for polynomial-size nonobtuse triangulation of planar straight-line graphs;

a solution to this problem would give another solution to "conforming Delaunay triangula-

tion" [12]. Mitchell [17] recently showed how to triangulate planar straight-line graphs with

maximum angle at most 7_r/8, using at most O(n 2 log n) triangles.

Another important direction is exploring whether our ideas can be used for related

mesh-generation problems. For instance, disk-packing may yield a simpler algorithm for

the problem of no-small-angle, nonobtuse triangulation [3, 16]. Perhaps we can use our

methods to produce nonobtuse meshes with skinny triangles aligned with the boundary.

(See [19] for aligned no-large-angle meshes.) Or perhaps our methods can be allied with a

heuristic method called "bubble systems" [24].

Finally, higher dimensions are still a mystery. Do 3-d polyhedra admit polynomial-size

triangulations without obtuse dihedral angles? Algorithms for point sets are known [6, 10].
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